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Hospitals typically lack effective enterprise level strategic planning of bed and care resources, contributing to bed census
levels that are statistically “out of control.” This system dysfunction manifests itself in bed block, surgical cancelation,
ambulance diversions, and operational chaos. This is the classic hospital admission scheduling and control (HASC) problem,
which has been addressed in its entirety only through inexact simulation-based search heuristics. This paper develops
new analytical models of controlled hospital census that can, for the first time, be incorporated into a mixed-integer
programming model to optimally solve the strategic planning/scheduling portion of the HASC. Our new solution method
coordinates elective admissions with other hospital subsystems to reduce system congestion. We formulate a new Poisson-
arrival-location model (PALM) based on an innovative stochastic location process that we developed and call the patient
temporal resource needs model. We further extend the PALM approach to the class of deterministic controlled-arrival-
location models (d-CALM) and develop linearizing approximations to stochastic blocking metrics. This work provides
the theoretical foundations for an efficient scheduled admissions planning system as well as a practical decision support
methodology to stabilize hospital census.
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1. Introduction
The classical hospital admission scheduling and control
(HASC) problem identified in the late 1970s addresses
one of the major systemic failures in hospital care deliv-
ery, census variability, through better strategic planning of
inpatient admissions. Solution methodologies to reduce this
variability are often referred to as census smoothing. In this
work we solve the elective inpatient (by which we mean
all admissions that are scheduled in advance rather than
emergency) strategic scheduling portion of the HASC prob-
lem to optimality. Our collaborations with multiple hos-
pitals across three continents enable a broad validation of
our approach, models, and results. Our HASC optimiza-
tion creates a strategic plan, analogous to block scheduling,
that allocates a specific number of slots each day for each
patient type (similar to allocating a certain number of hours
of operating room (OR) time to each service each day) over
a planning horizon to be filled by admissions personnel
scheduling according to the plan.

From Practice to Theory2 A Scientific Approach to the
HASC Planning Problem. The work in this paper was
developed during more than four years of collaborative
research with hospitals around the world. We have worked

with both large and medium sized hospitals and teach-
ing and nonteaching hospitals in the United States, the
Netherlands, Singapore, and Canada. The causes and con-
sequences of census variability detailed below, along with
the classic census patterns that lead to systemic hospital
congestion, were observed to be similar in every case. This
suggests that the problem we address is a global one that,
despite the many differences across hospitals and healthcare
systems, occurs with remarkable consistency. For the pur-
poses of cohesive exposition, we draw our examples from
and develop a complete analysis for one hospital in partic-
ular, though the model is validated across all four hospitals.
Our partner hospitals have agreed that this approach mer-
its development and implementation as a path toward the
hospital of tomorrow.

Consequences of Census Variability. Hospital census
variability is problematic throughout the world and impacts
cost, access, quality, and safety in healthcare delivery. Stud-
ies show that census variability leads to overcrowding of
the emergency department (ED), intensive care unit (ICU),
and post anesthesia care unit (PACU) resulting in increased
mortalities, compromised quality of care, emergency patient
diversions, and significant excess cost (see Mirel and Carper
2013, Sprivulis et al. 2006, Richardson 2006, Derlet et al.
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2001, Harrison et al. 2005, McManus et al. 2003, Proudlove
et al. 2003, Richardson 2006, Fatovich et al. 2005, Hoot
and Aronsky 2008, and Forster et al. 2003). Census vari-
ability also contributes to overloaded nurse staff, which is
linked to patient mortality, nurse burnout, and job dissatis-
faction (see Aiken et al. 2002). High levels of congestion
also cause hospitals to divert overflow patients into non-
preferred “off-ward” beds, which we call type 1 blocking
(see §4.1). Patient safety, however, is not well served by
placing patients off-ward and the practice increases nurse
stress, job dissatisfaction, and turnover (see Anderson et al.
1988, Brownson and Dowd 1997, Needleman et al. 2002).

Figure 1(a) is a census time series from a partner hospital
that illustrates typical census variability. Furthermore, most
hospitals also exhibit a pattern of a midweek census spike
followed by a sharp drop in census on Saturday and Sunday
(see Figure 1(b)). This weekly census “hump” contributes
to hospital overcrowding despite a modest average census
(the dotted line in Figure 1(b)).

Causes of Census Variability. It is well known that both
a weekly pattern in elective admissions (see Figure 2(a))
and the week-to-week variation in number of elective
admissions on a given day (see Figure 2(b)) significantly
contribute to both the weekly census hump and the week-
to-week variation in census, leading to hospital congestion
and patient blockages (see Bekker and Koeleman 2011).
Table 1 demonstrates the magnitude of variability in the
number of elective admissions by day of week (DOW).
It may be surprising to note that elective admissions actu-
ally exhibit higher coefficient of variation (i.e., standard

Figure 1. (Color online) Census variability shown in hospitals over (a) ∼ six months and (b) ∼ one month
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Figure 2. (Color online) Variability in elective admissions over the course of one year.
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deviation divided by mean) on many days than do emer-
gency admissions. The scheduling portion of HASC can be
defined in terms of the objective, stabilizing hospital cen-
sus, and system controls, elective admission scheduling. In
the following sections we describe an analytical model of
the system dynamics that links the control decisions to the
objective and allows for mixed-integer programming (MIP)
optimization methods.

The paper is outlined as follows. Section 2 describes the
current state of census smoothing research, §3 develops a
stochastic model for hospital workloads across a network
of resources, and §4 transforms the stochastic model into a
linear MIP to generate optimal admission schedules.

2. Smoothing Hospital Census
Hospitals that increase throughput (achieved through better
resource usage) can provide better access to their commu-
nity at a lower cost, provided they limit patient blockages.
To smooth hospital census, the hospital must address both
(1) the census midweek “hump” and (2) weekly variability
in admissions. The key to smoothing hospital census lies in
modeling the downstream ward/bed requirements for admit-
ted patients building toward a stochastic process capturing
ward census levels over time for any particular mix and vol-
ume of patient admissions.

The importance of census levels and census variability
to admission decision making has been studied in several
contexts. Connors (1970) uses stochastic patient flow mod-
els to link admissions decisions with hospital census.
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Table 1. Variation in numbers of total elective and emergency admissions by day of week (DOW).

Std. dev. Mean CV

Category DOW Emergency Elective Emergency Elective Emergency Elective

Hospital total Sun 8044 5051 48023 16057 0018 0033
Hospital total Mon 13023 32098 64079 117032 0020 0028
Hospital total Tue 11064 17098 62017 142026 0019 0013
Hospital total Wed 10059 23088 57053 114079 0018 0021
Hospital total Thu 13089 28093 58002 142004 0024 0020
Hospital total Fri 10096 20049 64079 101009 0017 0020
Hospital total Sat 8094 4076 52069 12083 0017 0037

Harrison et al. (2005) uses simulation to show that census
variability in combination with high census levels increases
the risk of hospital overcrowding. Jun et al. (1999) argues
that effective patient flow management can benefit the hos-
pital through high patient throughput, low patient wait
times, short length of stay (LOS), and low clinic overtime.

To effectively solve the HASC problem, models must
incorporate control/scheduling decisions into census fore-
cast models. Early work in this area began in the late 1970s
with Hancock and Walter (1979, 1983) and Griffith et al.
(1978). These early approaches took a comprehensive simu-
lation modeling approach to capture entire patient care path-
ways through the network of wards that comprise the hos-
pital. Schedule improvement relied on a simulation-based
heuristic approach to modeling the impact of admissions on
census levels. Using simulation, the landmark work of Han-
cock and Walter (1983) designed and implemented an inpa-
tient admissions scheduling and control system to achieve
high average census subject to constraints on the number
of cancelations and emergency patient blockages. Gallivan
and Utley (2005), Gallivan et al. (2002), Chow et al. (2011),
Adan et al. (2009), Bekker and Koeleman (2011) have all
studied the impact of elective admissions on census levels
in various wards, optimizing schedules with MIP models.
Recently, Harper (2002) and Helm et al. (2009) used simula-
tion frameworks to improve scheduling decisions for better
hospital resource usage.

Helm et al. (2011) presented a Markov decision process
(MDP) approach that focuses on the control side of the
HASC problem to dynamically manage an inpatient call-in
queue and elective surgery cancelation. It also showed, via
simulation, that it can be effective to manage the scheduling
side of the HASC problem.

Given the significant impact that elective scheduling has
on system performance, this paper makes a contribution by
(1) developing analytical census modeling methods, rather
than simulation-based methods and (2) embedding them in
a nonheuristic optimization to solve a model of the schedul-
ing side of the HASC problem and to yield important man-
agerial insight. Past work has either been simulation based,
or has not considered the full HASC system dynamics. For
example, the MIP papers focus on a single ward or isolated
feed-forward subset of hospital resources. The scope of our
work includes modeling the entire hospital, full patient care

trajectories, and census levels by ward; moreover it includes
the more realistic generalized network dynamics of the hos-
pital wards and the use of flexible wards to serve patients
off-ward. In short, we are able to solve a scheduling model
of the complete HASC problem using nonheuristic opti-
mization methods. To better capture the hospital dynamics,
we model the hospital as a general network of interacting
wards/units, incorporating the two primary types of inter-
action between wards that were not previously considered:
(1) transfers between different wards within the hospital as a
result of a change in the patient’s condition and (2) off-ward
servicing when a patient’s preferred ward is full.

Ignoring the off-ward and interward transfer mechanisms
omits critical dynamics of hospital system functioning. In
one of our partner hospitals 56% of patients transfer wards
at least once during their hospital stay, and among patients
who transfer, the average is 1.6 transfers per visit. Consid-
ering only the first ward, or a feed-forward subset of wards,
ignores a significant load that patients place on other hospi-
tal resources. Additionally, the percent of off-ward patients
is often quite significant; even in one of the better managed
hospitals we worked with, around 17% of patients were
located off-ward.

A primary contribution of this paper is in linking models
that optimize system-level objectives to stochastic models
of patient flow using complete patient trajectories through a
network of hospital wards and the modeling of ward interac-
tion mechanisms. Our main purpose is to develop a medium-
or long-term plan for what mix and volume of patients to
admit over time.

3. Characterization of the Stochastic
Census Process

Figure 3(a) illustrates our methodological approach. We
model the hospital as a network of interacting wards. The
primary resource modeled is the hospital beds, differenti-
ated by ward. The model uses the detailed temporal resource
requirements via a data-driven network patient flow model
to inform elective admission decisions while accounting for
the resource requirements of the emergency patients. We
show that it is possible to determine the volume and mix
of elective patients that will generate a stable workload and
minimize blockages and cancelations while maintaining or
increasing patient throughput.
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Figure 3. (Color online) Models of patient flow through a network of hospital wards.
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This section develops offered-load models of hospital
census that will incorporate corrections for cases where a
patient is denied admission to a full hospital (type 2 block-
ing) or where they are placed “off-ward” because the pre-
ferred ward is full (type 1 blocking). As a foundation, we
first characterize the patient trajectories for each patient
type. Although many different definitions of patient types
may be used, we consider patient type to be the patient’s
admitting service (e.g., cardiac, gastrointestinal, neurol-
ogy, etc.), because this fits with typical hospital scheduling
structures. We generate a probabilistic flow model of the
resources (beds) used by a patient of a given type over their
entire stay in the hospital. Figure 3(b) (corresponding also
to Table 2) shows the expected load (which is also a proba-
bility) a cardiology patient places on hospital wards over the
course of their treatment, where the y dimension indicates
days after admission.

Using these trajectories we can characterize both the elec-
tive census process and the emergency census process to
model the total census levels in each ward for a given elec-
tive admission schedule by day of week. In §4, these census
processes are linked to elective admission decision variables
in an optimization model to determine the optimal mix and

Table 2. Patient Temporal Resource Needs (PATTERN) matrix of the percent of patients that
require a bed on days following admission for a cardiology patient for (a) the congestion
contaminated path and (b) the estimated true demand path.

(a) (b)

Time (days) Time (days)

Ward 0 1 2 3 4 Ward 0 1 2 3 4

A3 4506% 3708% 2103% 1901% 1700% A3 4508% 3800% 2106% 1904% 1703%
C2O 602% 001% 000% 000% 000% C2O 602% 001% 000% 000% 000%
CCU 701% 305% 204% 103% 100% CCU 704% 306% 205% 105% 103%
ICU 001% 001% 001% 001% 001% ICU 001% 001% 002% 001% 001%

volume of patients over time subject to system performance
constraints, including bed block.

The remainder of this section proceeds as follows. In
§3.1 we discuss the design of the proposed elective admis-
sion scheduling system as well as modeling assumptions.
Section 3.2 introduces our stochastic model regarding how
patients move through the network of hospital wards over
the course of their treatment and presents a method for
extracting a patient’s preferred ward from the data when
patients are placed off-ward. Section 3.3 combines the
stochastic model of patient flow from §3.2 with a Pois-
son arrival stream to create a stochastic model of hospital
and ward workload. Section 3.4 extends this analysis to a
broader class of arrival streams, that includes determinis-
tic arrival streams, to model the more controlled arrival of
elective patients. Finally, combining the elective and emer-
gency workload models yields a model for the total ward
and hospital census, which is validated for accuracy using
historical data from four different hospitals in §3.5.

3.1. System Design and Assumptions

The decision variables (the number of patients of each
type to admit on each day of the admission cycle) provide
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admission targets (number of slots) for each service, similar
to the way that allocating surgical block time manages OR
case mix. These slots will be filled by the various admis-
sions personnel until the maximum number of patients of
that type for a given day is reached. Patients that cannot be
scheduled on a given day will be scheduled into empty slots
on subsequent days. This mechanism coordinates a previ-
ously decentralized admissions scheduling process.

In high demand hospitals, like the four that we study
in this paper, elective inpatient services have substantial
waiting lists and thus it is reasonable to assume that these
planned slots could be filled every week. A management
challenge lies in changing the culture to stabilize the number
of admissions from week to week. The operational mech-
anism of assigning admission maximums by day of week,
if followed, will inherently reduce the fluctuation in admis-
sions over time.

By using a deterministic arrival stream model, we are cap-
turing the results if the plan is followed accurately and the
admission plan is filled each week. It is important to note
that, as this is a strategic planning model, the elective deci-
sion variables represent the planned admissions and neither
(1) an uncontrolled arrival of requests for elective admis-
sions or procedures, nor (2) how the admission slots dynam-
ically get filled. The dynamic management of the admis-
sions system is left to the control portion of HASC (see
for example Hancock and Walter 1983, Helm et al. 2011).
Instead, we allocate slots that set an optimal mix and volume
of patient admissions and allow admissions personnel the
flexibility of filling those slots with any patient that matches
the criteria for the slot (much like OR block scheduling).
Using our modeling framework it is also possible to capture
deviations from the plan (see §3.4.3) modeled using various
nondeterministic arrival streams.

In our admission plan design, we model a repeating ad-
mission cycle (e.g., a week) and, when the system goes
beyond the cycle length, the admission plan is repeated
exactly as before. It should be noted that the modeling
framework is general and can work in a variety of con-
texts including situations with seasonality and scenarios
that are not cyclic. Although noncyclic systems and sys-
tems with seasonality can be modeled as well, a weekly
cyclo-stationary model matches the natural weekly cycle of
almost all hospitals (e.g., planned clinic times, OR time,
research time).

In traditional queueing network models, customers that
are blocked stop receiving service while they wait for a
server at the next station to free up. In contrast, when
patients are blocked from their preferred ward, they continue
to receive service while residing off-ward with only a small
increase (∼ 005 days) in LOS. The infinite capacity offered
load model we develop captures this phenomenon of receiv-
ing service continuously while in the hospital. In §4 we
further superimpose capacity constraints on the offered load
model to capture the volume of off-service patients and the

rate at which patients are blocked from entering the hos-
pital altogether (e.g., ambulance diversion). This technique
has been used successfully in other applications (e.g., the
modified offered load approach of Massey and Whitt 1994b
has been used extensively). The workload from patients that
are blocked from the hospital entirely is removed from the
workload estimates. Thus we only capture patients that are
in the hospital and once in the hospital, the patient continues
to be “served” until they leave. This approach models true
patient flow dynamics far better than traditional queueing
network blocking models or loss models.

Our model uses one day as the time step (though any time
step can work), because we anticipate our elective admis-
sions system being used most often at a daily granularity
to give flexibility and decision-making power to admissions
personnel, increasing the likelihood of acceptance of our
coordinated strategic plan.

3.2. Development of the PATTERN Stochastic
Location Process Model

To understand the effects of scheduling decisions and emer-
gency arrivals on census levels across the network of hos-
pital wards, consider as a foundational model the resource
(bed) requirements of a single patient over the course of
their treatment, which we call Patient Temporal Resource
Needs (PATTERN). To describe the flow of patients through
hospital wards, we develop a stochastic location process
model in the spirit of Massey and Whitt (1993, 1994a).
Some applications and extensions of this approach include
Leung et al. (1994) and Liu and Whitt (2011). Let 7 be
the set of wards and $ be the set of patient types. The state
space for the location functions can be defined as S=7∪
8ã∗1ã∗9, where state u represents a patient being in ward u,
state ã∗ represents the state where the patient has left the
hospital (i.e., discharged), and ã∗ represents the state where
the patient has not yet arrived at the hospital. Patients move
through the state space according to the S-valued stochas-
tic location process 8Ls1 k4t5: s ∈�1 k ∈$9, where k is the
patient type, s is the arrival time, and t > s is the time
of interest. For notational convenience we let S = S0 ∪
8ã∗1ã∗9, so that S0 represents the locations within the hos-
pital. Thus Ls1 k4t5 denotes the location of a patient at time t
given that the patient was admitted at time s.

Remark 1. Bed capacity is not explicitly represented in this
stochastic location process; however, the location process is
constructed from data that reflects actual flows observing the
bed capacity constraints (even at the ward level). For hos-
pitals with significant capacity constraints we view the data
as congestion contaminated, and Theorem 1 will provide a
tool to estimate the ideal flows, free of off-ward placement
or rejection from the hospital (types 1 and 2 blocking).

Remark 2. The fact that Ls1 k4t5 can depend on s enables
the modeling of the key hospital feature that the length of
stay and care path can depend on the time of admission.
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Figure 4. (Color online) Illustration of Ls1 k4t5 for three
sample care paths.
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To characterize the stochastic location process, let ès be
the set of right-continuous functions with left limits for
patients that first enter the hospital S0 at time s. Thus, ès

represents the set of all possible sample paths of the stochas-
tic location process Ls1 k4t5. An element �s ∈ès is a (deter-
ministic) mapping �s2 �→S such that �s4t5 represents the
location of the patient at time t. Figure 4 represents three
different sample path functions. The solid line represents
path �s1

4t5, a sample path of the process Ls1
4t5, the dashed

line represents the path �s2
4t5, a sample path of the pro-

cess Ls2
4t5, and the dotted line represents the path �s3

4t5, a
sample path of the process Ls3

4t5. Path �s2
4t5, for example,

represents a patient who arrives at time s2 at ward 1, trans-
fers to ward 3 for a brief stay, and then returns to ward 1
before being discharged slightly before time t. Note that a
location function � ∈ès is a right-continuous step function
that takes values in S0 over a continuous interval 6s1 Ts5 for
some finite Ts and that �4t5 = ã∗ for t < s and �4t5 = ã∗

for t ¾ Ts .
We let the entire function space è be the collection of all

ès . For any subset â ⊆è, let the associated probability mea-
sure, Ps4â5, represent the probability of realizing one of the
location functions in â , assigning 0 measure to any location
functions in â that did not begin at time s (the time of the
patient’s arrival). Thus Ps4ès5= 1 and Ps4èt5= 0 for t 6= s.
Ps4 · 5 characterizes the dynamics of the stochastic location
process, Ls1 k4t5. For our model, this measure is used to find
the probability that a patient is in ward u at time t, given that
they arrived at the hospital at time s. To do so, we define
a set of location functions and then the measure on that set
as follows. The measure of the set of location functions that
indicate that the patient is in ward u at time t is the proba-
bility of the patient being in ward u at time t. This set can
be written as

ât1 u = {
�s ∈ès2 s ¶ t and �s4t5= u

}
1 (1)

which captures the set of all location functions that place
a patient in ward u at time t. Of course to be in the hos-
pital at time t, the patient must have arrived before time t.
Moreover, we require that the patient not remain in the
hospital forever (consistent with Massey and Whitt 1993).
As mentioned, the specific measure of this set is defined by
the dynamics of the stochastic location process Ls1 k4t5. We
avoid the semi-Markov process because the solution to such
processes for general distributions and general transition

functions is often intractable, requiring further approxima-
tions. Rather, we define for each patient type, k, a specific
stochastic location model with probability measure Ps1 k as

Ps1 k4ât1 u5 = pk1u
s 4t − s51 (2)

Ps1 k4ât1ã∗5= pk1ã∗
s 4t − s5= 1 − ∑

u∈7
pk1u
s 4t − s51 (3)

where pk1u
s 4t5 is the probability that a patient of type k who

arrives at time s is in ward u, t time periods after their
arrival.

For each patient type, we calculate the proportion of the
total population present in each ward (or discharged) for
each discrete time step (see for example Table 2). It is often
the case that some of the historical hospital data captures
the hospital’s reaction to congestion (e.g., “off-ward” place-
ment) rather that the patients’ ideal flows. The simple solu-
tion is to take patient data only from periods when the hospi-
tal is not congested so that blocking and off-ward placement
is minimal. Even high demand hospitals have some peri-
ods of low congestion; however, this approach requires a
longer period of data. In general, we propose the following
approach to correct for data contamination.

Congestion impacts two aspects of patient flow post-
admission: length of stay and ward placement. Under stan-
dard procedures, no patients are forced out of the hospital
by blockage once they have been admitted. Off-ward ser-
vicing during the entire hospital stay only increases LOS by
around half a day (see Anderson et al. 1988), so this per-
turbation is not significant at the strategic planning level we
are investigating. Thus, off-ward placement is the conges-
tion effect we correct for to extract true patient flows from
congestion-contaminated hospital data.

We model both observed flows and true flows, distin-
guished notationally by adding a hat “ ˆ ” on top of the
parameter to associate it with the true quantity. The four
hospitals we worked with used overflow wards and over-
flow/blocking routing policies to manage congestion. There-
fore, the set of wards, S0, can be partitioned into specialized
wards, � ⊆ S0, and overflow wards � = S0\�. Let ai rep-
resent the arrival rate to ward i and pi1 j be the probability
that a patient who completes service in ward i transitions
next to ward j . Let �̂i represent the blocking probability in
ward i.

To discover the true flows, we relate the traffic equations
of the true flows in the underlying flow system to the flow
model observed in the hospital data. Each patient type has
its own arrival rates and transfer probabilities, but for the
sake of exposition, we initially suppress the dependency of
these parameters on patient type. The system of equations
below can be easily extended to include arbitrarily many
patient types:

ai = âi41 − �̂i5 for i ∈ �1 (4)

pi1 j = p̂i1 j41 − �̂j5 for i1 j ∈ �1 (5)
∑
k∈�

pi1 k =∑
j∈�

p̂i1 j �̂j for i ∈ �0 (6)
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In Equation (5), the observed transfer probability from
i to j is the true transfer probability multiplied by the
proportion of time the patient is able to enter the ward
(i.e., unblocked). Equation (4) follows similar logic. Equa-
tion (6) means that the total probability of transitioning
into the overflow ward is the sum of all the between-ward
transitions that were blocked. Equations (4)–(6) represent
a nonlinear system of equations with n variables and n
unknowns after patient types are included. Let P = 6pi1 j 7
be the observed ward transition matrix and let P � be the
its submatrix that represents the transitions between special-
ized hospital wards, i.e., 8pi1 j 2 i1 j ∈ �9. Let P� =∑

i∈� Pi,
where Pi is the ith column vector. In words, P� repre-
sents the probability of transitioning from a specialized
ward into any of the overflow wards, i.e., 8

∑
j∈� pi1 j : i ∈ �9.

By transforming the nonlinear system into an equivalent
linear system, we show that the traffic equations have a
unique solution obtained by matrix inversion (proved in
the online appendix (available as supplemental material at
http://dx.doi.org/10.1287/opre.2014.1317)).

Theorem 1. Given P � has full rank, the traffic equations
given by Equations (4)–(6) have a unique solution given by

� = 4P �5−1P�1 �̂i =
�i

1 +�i

1

âi =
ai

1 − �̂i

1 p̂i1 j = pi1 j

1 − �̂j

0
(7)

If the transition probability matrix, P � , does not have full
rank (i.e., if any rows of the matrix are linearly dependent)
then we can break the matrix into submatrices of full rank
by extracting rows that cause linear dependence and then
applying Theorem 1 to each cluster separately.

To validate our method, we developed a simulation model
of admissions, blocking, and off-ward placement to gen-
erate congestion contaminated census process realizations
from one year’s worth of data. This enabled us to compare
the results from our decontamination method with a known
true demand distribution. We simulated three ward hospi-
tals because three wards are considered sufficient to capture
the rich network structure of interest, and this structure is
often used in the patient flow literature. We designed a test
suite of 1,000 cases with the hospital parameters generated
randomly. We used the following parameterizations. Patient
LOS for each patient type was log-normally distributed with
mean (in days) and variance parameters randomly chosen
from a uniform(2,8). The ward sizes were chosen from
a uniform(8,60) distribution. Transfer probabilities were
uniform(0,1) for each pair of wards. Random arrival rates
were generated also according to a uniform, but with atten-
tion to creating a stable queueing system. Using the sim-
ulation, we generated congestion-contaminated “observed”
data and then used Theorem 1 to estimate the underlying
flow parameters and compared our estimate with the true
parameters used to design the simulation.

The primary quantity needed to estimate a patient’s true
care pathway is the transfer probability, which had a small
0.1% average absolute error across the test suite. The block-
ing probability and arrival rate estimates, also had small
errors 1.0% average absolute error and 1.5% average abso-
lute percent error, respectively. As three ward structures
are taken to be representative in the patient flow litera-
ture, we expect the results to be similar for other systems.
The high level of accuracy demonstrated with our large
test suite supports the claim that our method is capable of
identifying true care needs from congested historical data,
enabling contamination-free parameterization of the loca-
tion processes.

Once the true system dynamics have been calculated,
Theorem 1 can be used in a preprocessing step (prior to
calculating patient path probabilities) to adjust the patient
pathways for each individual patient type to reflect each
patient’s true demand by removing congestion contamina-
tion. We begin by noting that the hospital’s raw data accu-
rately represents each patient’s desired ward (true demand)
except when a patient enters an overflow ward as an off-unit
patient. This is where Theorem 1 is needed to correct for
the congestion that forced the patient into overflow wards
by capturing which ward the patient was trying to enter
(their preferred ward for that segment of treatment) when
they were forced into the overflow ward because of lack of
capacity. To estimate the patient’s preferred ward in such a
situation, we replace the line in the raw data that has one in
the overflow ward and zero in all other wards (e.g., row 2
of “congestion contaminated data” in Figure 5) with a set
of probabilities across all specialized wards: �4ward u is
the patient’s preferred ward5 for each u ∈ � (e.g., row 2 of
“preferred ward transformation” in Figure 5).

If a patient moves to the overflow ward as a result of a
transfer from ward i, then �4ward u is the patient’s pre-
ferred ward � the patient was blocked5= p̂i1 u�̂u/

∑
j∈� p̂i1 j �̂j ,

where p̂i1 j is the true probability of transferring from ward i

to ward j and �̂u is the blocking probability in ward u, both
obtained from Theorem 1. If, instead, the patient begins
their stay in the overflow ward, the probability that the
patient’s preferred ward is u is given by âu�̂u/

∑
j∈� âj �̂j ,

where âj is the true arrival rate to ward j obtained from
Theorem 1. Thus to calculate the patient’s true demand for
service, the workload is shifted from the observed load in
the overflow ward to the specialized ward(s) that represent
the patient’s preferred ward as shown in Figure 5. Doing this
for each patient, we can transform the hospital’s congestion-
contaminated raw data into congestion free data that can
be used to more accurately compute the location function
probabilities.

An example of a fully parameterized location process for
cardiology patients is shown in Table 2, illustrating before
and after the transformation to extract the true demand over
five days. Entry 4j1 t5 of the matrix represents the proba-
bility that the patient will require a bed in ward j , t time
periods (e.g., days) after admission. In this table, ward A3
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Figure 5. Transformation of congested data into true demand data for an individual patient who stayed in ward 4 on day 2
of their hospital stay and then was transferred to an overflow unit on day 3 because the preferred ward that they
wanted to transfer to was full.

Congestion contaminated data

Ward 1 W2 W3 W4 Ovrflw

Day 2 0 0 0 1 0
Day 3 0 0 0 0 1
Day 4 0 0 0 0 1

Preferred ward transformation

Ward 1 W2 W3 W4 Overflow

Day 2 0 0 0 1   0

Day 3 p̂4�1�̂1

/ ∑
j∈�

p̂4� j �̂j p̂4�2�̂2

/ ∑
j∈�

p̂4� j �̂j p̂4�3�̂3

/ ∑
j∈�

p̂4� j �̂j 0   0

Day 4 p̂4�1�̂1

/ ∑
j∈�

p̂4� j �̂j p̂4�2�̂2

/ ∑
j∈�

p̂4� j �̂j p̂4�3�̂3

/ ∑
j∈�

p̂4� j �̂j 0   0

is a cardiology ward, CCU is the critical care unit, ICU is
the intensive care unit, and C2O is a ward for short stay
patients (usually less than two days). Note that the proba-
bilities need not sum to 1 because implicitly the remaining
probability mass not assigned to a ward is the probability of
the patient not requiring a hospital ward bed at time t.

Remark 3. Through testing, the optimization model pre-
sented in §4 was shown to be robust to the modifica-
tions to the location process resulting from correcting
for congestion-contaminated paths. The difference between
the optimization results using congestion contaminated
location functions versus the transformed “true demand”
location functions was small. Over several different sce-
narios, the relative percent difference in objective function
(blocking probability) was very small—between 3% and
5% in experiments run, or likewise a difference in expected
blockages per week of 0.05 to 0.1—and the final schedules
were very similar. To explain how this can occur, consider
that the math model optimizes system level metrics (hospital
level blockage, or total elective throughput) subject to con-
straints on off-ward census, which is the model component
impacted by congestion contamination. If those constraints
are not very tight, they will not have much impact. Fur-
thermore, in most cases there are many possible solutions
that achieve a similar objective value, so in many instances
a change in the off-ward constraint brought about by cor-
recting for congestion contamination will not have a large
impact on the objective if another solution with similar per-
formance can be achieved by shifting some of the elective
workload. Logically, sufficiently high levels of data contam-
ination will eventually have a strong impact on the optimal
solution after correcting for data contamination.

3.3. PATTERN Poisson-Arrival-Location Model
(PALM) of Emergency Census

We begin by modeling the demand for services with each
ward modeled as a cluster of infinite server queues. There
is one queue for each emergency patient type, with its own
nonhomogeneous arrival rate, its own service distribution,
and its own routing probabilities, denoted by Massey and
Whitt (1993) as 4Mt/Gt/�5N /Gt . It has been shown that
the nonstationary Poisson process is a good model for emer-

gency patient arrivals (see Harrison et al. 2005), and we
allow for general, nonstationary service time distributions
as well as nonstationary routing probabilities that may also
depend on the length of stay in a given ward. Our interest
lies in the number of patients demanding a bed in each ward.
Letting there be �7� = M wards and n emergency patient
types, the network of M · n queues has Qu4t5 = Q1

u4t5 +
Q2

u4t5 + · · · + Qn
u4t5 emergency patients placing a service

load on ward u at time t, where Qk
u4t5 is the demand of type

k patients for ward u. Let Q4t5=∑
u∈7

∑n
k=1 Q

k
u4t5 denote

the total emergency patient load at time t. These two quanti-
ties are sufficient for our later analysis, in which we overlay
capacities on the demand model to calculate blockages and
off-ward census.

To specify the PATTERN PALM model for the emer-
gency census process, we rely on the Poisson random
measure approach proposed by Massey and Whitt (1993).
In PATTERN PALM, patients arrive according to a nonho-
mogeneous Poisson process and then flow through the hos-
pital according to our PATTERN stochastic location process
Ls1 k4t5 described in §3.2. Details of the standard Poisson
random measure and its extension to a doubly stochastic
Poisson process can be found in the online appendix EC.1,
which also provides elaboration on this section. We define
our PATTERN PALM random measure in terms of the
composition of the standard Poisson random measure M,
and the PATTERN intensity measure, �. In this section
we refer to M, the set of measures � on �+, and N =
8� ∈M: �4t5 ∈�+9, the set of measures � ∈ M that yield
integer values.

Here we provide an alternative definition of the inten-
sity of the Poisson random measure for the PALM model
to enable the extension of the arrival-location modeling
approach to deterministic controlled arrivals in §3.4. To
specify the location random measure, we define a mapping
from the probability space 4è1B1�5 into the measure space
4M1B4M55, with B4 · 5 as the Borel sigma algebra. Let the
probability that a patient of type k arriving at time s is in
ward u at time t be defined as

�k4�s ∈ès2 �s4t5= u5≡ Ps1 k4� ∈è2 �4t5= u5

=
{

0 if t < s

pk1u
s 4t − s5 if t ¾ s0

(8)
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The random location measure of the stochastic process,
Ls1 k4t5, for the subset of wards J⊆S is then specified by

åk1 s4t1J1�5=
{

1 if �4t5 ∈J1 � ∈ès

0 otherwise.
(9)

Now we can specify the random intensity measure, Nk,
for patients of type k by combining the nonhomogeneous
Poisson arrival process having nonnegative deterministic
integrable external-arrival-rate function �k4t5 ∈�+ with the
location random measure from Equations (8) and (9). The
arrival rate function, �k4t5, drives the number of type k
emergency patient arrivals. Once a patient has arrived at
time s, the patient then flows through the wards according
to the PATTERN stochastic location process, Ls1 k4t5 with
dynamics driven by the probability measure Ps1 k4 · 5.

The rate of flow into the group of wards J at time t of
type k arrivals entering the hospital at time s follows by
multiplying the nonstationary arrival rate by the stochastic
location random measure: �k4s5åk1 s4t1J5. Random mea-
sure Nk gives the random arrival-transition intensity of type
k arrivals to wards J at time t for patients that entered the
hospital over the interval 4a1 b7:

Nk44a1 b71 t1J5=
∫ b

a
�k4s5åk1 s4t1J5ds0 (10)

Intuitively, this can be related to Poisson splitting of a
nonhomogenous Poisson process. The external arrival inten-
sity drives the number of arrivals over a period of time;
however, each arrival will be in a particular location depend-
ing on the location stochastic process Ls1 k4t5. Therefore
the external arrival intensity is distributed over time across
the wards (or “departed”). Because Nk is a random inten-
sity, M � Nk is a random measure that represents a dou-
bly stochastic Poisson process. For our purposes, the mean
arrival-transition intensity in combination with the Poisson
random measure is sufficiently precise and computation-
ally efficient. The mean (deterministic) transition intensity
measure, �k, and its properties are defined in the following
lemma (proved in the online appendix EC.2):

Lemma 1. For the deterministic average arrival intensity
measure, �k, the following hold:

(i) �k44a1 b71 t1J5≡ E6Nk44a1 b71 t1J57=
∫ b

a
�k4s5

·∑u∈J p
k1u
s 4t − s5ds,

(ii) �k is a measure on �×�×S.

We combine the mean arrival-transition intensity mea-
sure with the standard Poisson random measure to obtain
the PATTERN Poisson random measure for type k patients,
Mk = M ��k. Let Bi = 4ai1 bi7× ti ×Ji represent the event
that patients arrive at the hospital on interval 6ai1 bi5, and
those patients are in the set of wards Ji ⊆S0 at some future
time, ti. Then Mk can be shown to have a product form
Poisson distribution with rate �i:

P
(
Mk4B15=m11Mk4B25=m21 0 0 0 1Mk4Bn5=mn

)

=
n∏

i=1

e−�i�
mi
i

mi!
(11)

�i ≡ E6Mk4Bi57=�k

(
4ai1 bi71 ti1Ji

)

=
∫ bi

ai

�k4s5
∑
u∈Ji

pk1u
s 4ti − s5ds0 (12)

Equation (12) follows from Lemma 1. We now quantify
the distribution on the number of emergency patients in the
cyclo-stationary system (mentioned in §3.1) in steady state,
where the arrival pattern is repeated on a weekly basis. If
we let �k be the maximum length of stay for a patient of
type k (in our case study of §4.4, maxk �k = 215) then we
have the following result, which is proved in the online
appendix EC.2.

Theorem 2. The number of emergency patients in ward u,
denoted by Qu4t5 for u ∈ 811 0 0 0 1 n9, are independent Pois-
son random variables for each time t ∈�+ with finite mean
given by

mu4t5=
n∑

k=1

∫ t

t−�k

�k4s5p
k1u
s 4t − s5ds0 (13)

3.4. PATTERN Deterministic
Controlled-Arrival-Location Model (d-CALM)
of Elective Census

The approach for the elective census model represents
an extension of the PALM methodology to processes
with deterministic arrivals, which we term the determin-
istic controlled-arrival-location model (d-CALM). In this
approach, arrivals occur at specific times (possibly in
batches), rather than according to a Poisson distribution.
Once a patient of type k has arrived at time s, they flow
through the hospital according to their PATTERN stochastic
location process Ls1 k as in §3.2. This makes explicit our con-
dition that each patient type has a unique location process
determined by their characteristics at the time of admission.

3.4.1. Defining the Elective Census Stochastic Process.
Combining the PATTERN model for individual patients
with the elective admission schedule, ä, it is possible to
model the total elective census in the hospital over time to
represent either historical or future behavior. We first present
the formal analysis, then illustrate it with an example. Our
approach is to formulate a point process as in §3.3. For
patients of type k, let 44tk111äk1 tk11

51 4tk121äk1 tk12
51 0 0 05 rep-

resent the sequence of deterministic arrivals with tk1 i being
the time of arrival of the ith batch of patients of type k and
äk1 tk1 i

being the number of type k patients scheduled for
time tk1 i. Let ì=è� so that

�k = {
�k1 4tk115111�k1 4tk115121 0 0 0 1�k1 4tk1151äk1 tk11

1�k1 4tk12511
1

�k1 4tk125121 0 0 0 1�k1 4tk1251äk1 tk12
1 0 0 0

} ∈ì
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represents the set of location functions for the scheduled
arrivals. Under the infinite capacity model, we can define the
d-CALM probability measure for patients of type k being
in ward u as

�k

(
8� ∈è�2 �k1 4tk1n51 n

4t5= u9
)

=
{

0 if t < tk1n1

pk1u
4tk1n5

4t − tk1n5 if t ¾ tk1n0
(14)

where pk1u
4tk1n5

4t − tk1n5 is as before in Equation (3). Then
we can define the d-CALM point process, for a realization
vector � as

Nk1u1ä4t1�5=





∑
s∈8tk1 i 2 tk1 i<t9

∑äk1 s

n=1 åk1 s4t1 u1�k1 s1n5

if tk11 < t1

0 if tk11 > t1

(15)

where åk1 s4 · 5 is the patient type k random measure defined
for the stochastic location process in Equations (8) and
(9). It can be seen that this process describing the elec-
tive/scheduled workloads across the network of wards can
be written instead as

Nk1u1ä4t5= ∑
s∈8tk1 i 2 tk1 i<t9

äk1 s∑
j=1

18Lj
s1 k4t5= u91 (16)

where Nk1u1ä4t5 is the number of elective patients of type k
in ward u at time t under schedule ä. We will work with
this more convenient form to analyze the d-CALM process,
which is equivalent to the point process defined by Equa-
tions (14) and (15). The ward level census can be calculated
by summing over patient types. Now we also include the
system design assumption of a cyclically repeating elective
admission schedule. We present the case where the hospital
is concerned with daily measures of admissions and census
as an example.

Using Equation (16) the census in ward u, C t
u1d1

, can be
calculated on week t on a given day d1 of the admission
cycle. If we take the length of the cycle to be one week for
example, the census in ward u on a given day d1 can be
calculated for a t week horizon (C t

u1d1
from Equation (17))

or an infinite horizon (C�
u1d1

from Equation (18)),

C t
u1d1

=
7∑

d2=1

∑
k∈$

äk1d2∑
j=0

t∑
n=0

1
{
L
j1 n
d2+7n1k4d1 + 7t5= u

}
1 (17)

C�
u1d1

= lim
t→�

C t
u1d1

1 (18)

where L
j1 n
s1 k4 · 5 represents the 4j1 n5th i.i.d instance of the

location process Ls1 k4 · 5, one process for each admitted
patient, j , on a given week, n, and 18 · 9 is the indicator
function. In Equations (17) and (18), the first sum refers

to the day of the week that the patient was admitted. The
second sum refers to the diagnosis of the patient, and the
third sum represents the number of patients of that diagnosis
that are to be scheduled on day d2 of the admission cycle.
The final sum over n iterates through weeks (or through
repeating cycles). Total hospital census is found by adding
up all wards.

These equations are best understood through a sim-
ple example. Consider a plan that admits two cardiology
patients (patient type = CAR) every Monday. What is the
load that this plan places on the cardiology ward (ward c) on
Tuesdays? Let 18Lj1 n

s1CAR4t5= c9 represent whether the 4j1 n5
indexed cardiology patient (i.e., jth patient admitted on
week n) is in the cardiology ward c on day t given they were
admitted on day s. On the first Monday, the system admits
two cardiology patients (call them patient 4j = 11 n= 05 and
4j = 21 n = 05). This leads to a census for Tuesday of the
first week (n= 0) of 18L110

11CAR425= c9+ 18L210
11CAR425= c9.

Note that 18L110
11CAR425 = c9 and 18L210

11CAR425 = c9 are i.i.d.
because they represent two different patients. In the sec-
ond week we admit two more cardiology patients (call them
patient 4j = 11 n= 15 and 4j = 2, n= 15). Since the first
two cardiology patients admitted previously may still be in
the hospital (and thus on day 8 of their length of stay) the
census for the Tuesday of the second week (n= 1) is

18L110
11CAR495= c9+ 18L210

11CAR495= c9

+ 18L111
81CAR495= c9+ 18L211

81CAR495= c90

If we let the system run for t weeks, then the census on the
Tuesday of week t is given by

t∑
n=0

18L11 n
7n+11CAR47t + 25= c9+ 18L21 n

7n+11CAR47t + 25= c90

This shows how we construct the census profile for Equa-
tions (17) and (18). In this paper we are primarily interested
in the steady state behavior of the system, and thus rely
mostly on the infinite horizon formulation of Equation (18)
in the analysis that follows.

3.4.2. Moments of the PATTERN d-CALM Elective
Census Process. An important feature of the d-CALM
model is that the first and second moments of the elective
census process can be calculated analytically, which facili-
tates the elective admissions optimization. Taking the cycle
length to be one week, for example, the census mean for
ward u on a given day d1 can be calculated from Equa-
tions (17) and (18) by the monotone convergence theorem as

�d11u
4ä5=E

[ 7∑
d2=1

∑
k∈$

äk1d2∑
j=0

lim
t→�

t∑
n=0

1
{
L
j1n
d2+7n1k4d1 +7t5=u

}]

=
7∑

d2=1

∑
k∈$

äk1d2

�∑
n=0

pk1u
d2−7n4d1 −d2 +7n50 (19)
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The equality follows from the fact that 18X = xk9 follows
a Bernoulli distribution and thus E618X = xk97 = pk. The
mean census level in the hospital is

∑
u∈7�d11 u

4ä5.
We compute the variance of the elective census pro-

cess for (1) the variance in ward census and (2) the vari-
ance in total hospital census (with proof in the online
appendix EC.2).

Lemma 2. The covariance at day t of the cyclo-stationary
location processes for two patients of types k1 and k2 arriv-
ing at times s1 and s2 being in ward u1 and u2 that were
admitted as patient j1 and j2 of week n1 and n2 is

(i) Cov418Lj11 n1
s11 k1

4t5= u19118Lj21 n2
s21 k2

4t5= u295= 01
for all 4j11 n11 k11 s15 6= 4j21 n21 k21 s25,

(ii) Cov418Lj1 n
s1 k4t5= u19118Lj1 n

s1 k4t5= u295

= −pk1u1
s 4t − s5pk1u2

s 4t − s5 for u1 6= u2.

Theorem 3. Letting d4n5 = d1 − d2 + 7n, the variance of
the cyclo-stationary ward and total census processes on
day d1 ∈ 81121 0 0 0 179 considering an infinite horizon and
admission plan ä is

(i) �2
d11 u

4ä5=∑7
d2=1

∑
k∈$äk1d2

∑�
n=0 p

k1u
d2−7n4d4n55

·(1 −pk1u
d2−7n4d4n55

)
,

(ii) �2
d1
4ä5=∑

u∈7 �2
d11 u

4ä5−∑7
d2=1

∑
k∈$äk1d2

·∑�
n=0

∑
u1 6=u2

p
k1u1
d2−7n4d4n55p

k1u2
d2−7n4d4n55.

We see that �2
d1
4ä5 can be written as a linear function

of the admission plan (decision) ä, and thus included in
an integer programming framework for determining optimal
schedules. Since, from Theorem 3, the variance is still linear
in terms of our decision variables äk1d, the model remains
solvable by standard MIP solution approaches.

3.4.3. CALM with Deviations from the Planned
Admission Schedule. Although the purpose of this paper
is to develop an optimal strategic admission plan and pre-
dict its benefits if followed correctly, we can also capture
the effect of deviations from the plan by letting the decision
variable (admission target) be the mean rate of a general
stochastic arrival process. The variability around the mean
represents deviation from the plan. The following theorems
show that the mean of the CALM model can be calcu-
lated linearly for any arrival process and that the variance
of the CALM model can be calculated linearly for a certain
class of arrival processes (with proofs given in the online
appendix EC.2).

Theorem 4. Let Xk1d be the random number admissions of
type k and day d having mean Ɛ6Xk1d7 = äk1d. The mean
workload in ward u on day d1 is given by

�d11 u
4ä5=

7∑
d2=1

∑
k∈$

äk1d2
·

�∑
n=0

pk1u
d2−7n4d1 −d2 + 7n50 (20)

Theorem 5. If Var6Xk1d7 = f 4äk1d5, where f is a linear
function, then the variance of the workload in ward u on
day d1 is also linear in äk1d and is given by

4i5 �2
d11u

4ä5=
7∑

d2=1

∑
k∈$

[
äk1d2

�∑
n=0

pk1u
d2−7n4d4n55

·41−pk1u
d2−7n4d4n555+f 4äk1d5

·
( �∑

n=0

pk1u
d2−7n4d4n55

)2]
1

4ii5 �2
d1
4ä5=∑

u∈7
�2
d11u

4ä5−
7∑

d2=1

∑
k∈$

äk1d2

∑
u1 6=u2

�∑
n=0

p
k1u1
d2−7n

·4d4n55pk1u2
d2−7n4d4n55+

7∑
d2=1

∑
k∈$

f 4äk1d2
5

· ∑
u1 6=u2

[ �∑
n=0

p
k1u1
d2−7n4d4n55

][ �∑
n=0

p
k1u2
d2−7n4d4n55

]
0

Theorem 4 shows that the mean workload can be cal-
culated linearly in the admission plan, ä regardless of the
arrival distribution. Theorem 5 asserts that, if the variance of
the arrival distribution is a linear function of the mean, then
the variance may also be calculated linearly in ä. A number
of distributions that would be good for modeling deviation
from the admission plan also have the property that the vari-
ance is a linear function of the mean including uniform,
Poisson, and normals of the form N4äk1d1 f 4äk1d55.

3.5. Validating the Hospital Census Model

The total census process (for wards and for the hospital)
is approximated by summing the emergency and elective
census processes (§3.3 and 3.4). In this section, we show
that this approximation closely matches the actual census
process for four hospitals from four countries and three con-
tinents. For each hospital, we divided the data equally into a
training set and a test set. The training set (consisting of the
first half of the data, in terms of time) was used to parame-
terize the location process models and estimate future emer-
gency arrival rates. Our model then generated emergency
census estimates for the test set (the second half of the
data) using the PATTERN PALM model parameterized by
the location processes and emergency arrival rate estimates
from the training data. The d-CALM census model was
built using location processes parameterized by the training
data and a weekly cyclo-stationary, deterministic controlled
arrival (admission) process. The deterministic arrival rate of
each type on any day was based on the mean arrival rates for
elective admission by day of week in the test data. This was
done to emulate the idea that the strategic plan was followed
on average, though in the test data there were deviations
from the “plan” from week to week.

It is important to note that, despite the fact that we built a
cyclo-stationary model with deterministic planned elective
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Table 3. Accuracy of the hospital level occupancy model across four hospitals on three different continents as measured
by the percent error in the mean (Err) and the percent error in the 95% quantile (95% Q Err).

Hospital 1 (%) Hospital 2 (%) Hospital 3 (%) Hospital 4 (%)
All

DOW avg. Err 95% Q Err Err 95% Q Err Err 95% Q Err Err 95% Q Err

Sunday 100 001 100 −308 −206 100 204 208 302
Monday −200 −001 −005 −108 −002 −401 −402 −006 −303
Tuesday 003 −008 −001 −100 102 100 205 −100 −206
Wednesday −107 −105 101 −007 008 −502 −509 −208 −209
Thursday 003 −101 208 101 106 203 106 −108 −408
Friday 104 −102 109 105 201 505 205 103 −009
Saturday 206 −106 −002 −104 −006 509 704 307 307
MAPE 200 009 101 106 103 306 308 200 300

Note. The mean percent error across hospitals is the first column and the mean absolute percent error (MAPE) across days of the week is
given in the last row in bold.

Table 4. Average absolute percent error of the model vs. true occupancy across 33 wards and a sample of the best and
worst errors for six of the 33 wards.

Sample of the best and worst wards (%)
Avg. of

DOW 33 wards (%) Ward 3 Ward 7 Ward 12 Ward 22 Ward 25 Ward 31

Sunday 3 1 1 8 6 0 1
Monday 4 0 4 7 11 0 0
Tuesday 3 0 1 6 8 0 1
Wednesday 3 2 1 5 6 2 1
Thursday 5 1 0 6 3 3 2
Friday 5 1 0 7 4 4 3
Saturday 4 3 2 6 7 3 2
Average 4 1 1 7 6 2 1

admission rates based on historical data, the model still per-
formed quite well in predicting true future occupancy lev-
els across a variety of measures (mean, quantile, and ward-
level) in four significantly different hospitals. Tables 3 and 4
show the model accuracy at the hospital and at the ward
level for 33 hospital wards. Hospital 3 was a small hospital
(in terms of beds), hospitals 2 and 4 were medium sized,
and hospital 1 was large. The average occupancy in the four
hospitals ranged from 82% and 92%. We obtained an aver-
age absolute percent error of 2.0% across all hospitals.

The deviations are seen to be relatively small and have lit-
tle effect on accurately approximating system metrics such
as cancelations and blockages as will be calculated in §4.3.
Prior efforts at solving this problem for the entire hospi-
tal have relied on simulations to achieve accurate census
approximations, making optimization difficult (see Helm
et al. 2011, Hancock and Walter 1979, Harper 2002). The
validation in this section demonstrates that the analytical
model, which is amenable to optimization, is sufficient
for modeling hospital occupancies, thereby eliminating the
need for computationally limiting simulations.

4. Optimization of Elective Admissions
Mix and Volume

In §3 we developed a modeling and analysis method for
quantifying census under a given admission plan. In this sec-

tion we design an integer programming model to determine
the optimal schedule given a set of metrics. We trade off
two conflicting objectives in hospital management: (1) the
desire to admit as many elective patients as possible (alter-
natively to keep bed utilization high) and (2) the desire to
limit the number of blockages and off-ward boarding for
both emergency and elective patients. The stochastic pro-
cess from §3 characterizes the raw demand for beds, so to
quantify the blockages we need to superimpose the hospi-
tal capacity on this model. Section 4.1 presents methods for
calculating various blockage metrics in a manner that can
be incorporated into an integer programming formulation.
Section 4.2 presents two different formulations for elective
admissions mix and volume optimization that could be use-
ful to hospitals. Section 4.3 validates the method by com-
paring the forecasted census from the optimization model
with a high fidelity simulation of hospital operations.

4.1. Computation of System Effectiveness Metrics

In hospitals, there are two significant types of bed block:
(1) ward-level bed block and (2) hospital-level bed block.
Type 1 prevents a patient from entering a particular ward,
forcing the patient into an off-ward bed. Type 2 prevents any
access to the hospital (e.g., cancelation, diversion). Limiting
both types of bed block is critical to operating a high per-
forming hospital. To capture the different blocking effects,
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Figure 6. (Color online) Illustration of approximations for (a) expected off-ward census and (b) hospital level blocking
probability.

(b) Reduced capacity rlang approximation(a) Expected blockage approximation forwards

P(Y2 = � – E[X(Θ)2] + 2)ˆ ˆ
P(Y2 = � – E[X(Θ)2] + 1)ˆ ˆ

P(Y2 = � – E[X(Θ)2])ˆ ˆ

E[X(Θ)3]ˆ

E[X(Θ)2]ˆ

E[X(Θ)4]ˆ E[X(Θ)5]ˆ E[X(Θ)6]ˆ

P(Y2 = 1)ˆ

Elective patients

Emegency patients

Blockages
Capacity: B

Y2
ˆ

Emegency patients

Elective patients

Erlang
loss

model

True capacity:
B beds

Modified capacity:
B – �2, u(Θ) beds

�2, u(Θ)
�3, u(Θ) �4, u(Θ) �5, u(Θ) �6, u(Θ)

Monday     Tuesday    Wednesday  Thursday       Friday Monday     Tuesday    Wednesday  Thursday       Friday

we develop two linearizing approximations to capture type
1 (ward-level) and type 2 (hospital-level) blocking; illus-
trated in Figure 6. Both approaches begin by calculating the
mean elective census by day of week (using Theorem 4),
indicated by the solid bar (which we justify below). The
number of beds remaining (i.e., capacity minus mean elec-
tive demand) is referred to as the reserved capacity (for
emergency patients).

Expected Blockages2 Ward-Level. For type 1 blocking,
shown in Figure 6(a), we start with the mean census, given
by Theorem 4, and add the emergency patients, indicated
by the individual bars on top of the solid bar, calculat-
ing the probability of each quantity of emergency patients
present using Theorem 2. Blockages are tallied when the
number of emergency patients plus the mean number of
elective patients exceeds the ward capacity, Bu for ward u.
This enables, for each ward, the expected amount by which
demand will exceed capacity and therefore trigger off-ward
servicing. This captures the dynamics in which patients are
not “lost” and service continues even for blocked patients,
which is a better representation of reality than a loss model
or a traditional blocking model. This approximation is pre-
sented mathematically in Equations (27) and (28) of §4.2.

Reduced Capacity Erlang Approximation2 Hospital Level.
Demand from patients blocked from entering the hospital is
lost. To capture this phenomenon we propose an approxima-
tion based on the Erlang loss model that we call the reduced
capacity Erlang approximation, illustrated in Figure 6(b).
Blocking is calculated using the Erlang loss formula on a
system that has an offered load of m14t5, the emergency
offered load, and number of servers B−m24t5, where m24t5
is the elective offered load:

�4s −m24t51m14t55= m14t5
s−m24t5/4s −m24t55!∑s−m24t5
k=0 m14t5

k/k!

= �4CEm4t5= s −m24t55

�4CEm4t5¶ s −m24t55
0 (21)

This approximation can be linearized in the decision vari-
able, ä, the elective admission schedule. In §4.2, Equa-
tions (23)–(25) serve to linearly calculate to arbitrary

precision �4CEm4t5 ¶ s − m24t55. To linearize the block-
ing probability constraint—limiting the blocking probability
to a value less than �—simply multiply both sides of the
inequality by the Erlang denominator:

�4s −m24t51m14t55¶ �

⇔ �
(
CEm4t5= s −m24t5

)
¶ ��

(
CEm4t5¶ s −m24t5

)
0

Since �4CEm4t5¶ s−m24t55 can be calculated linearly, the
Erlang loss blocking constraint can be linearized. This con-
straint is represented by Equations (23)–(25) of §4.2.

Since the controlled cyclo-stationary system will opti-
mize a deterministic number of elective admissions by day
of week, the majority of the census variability will now
come from the emergency patients, which we capture with
the emergency census distribution. Hence, these approxi-
mations capture much of the stochastic dynamics that con-
tribute to blocking. This likely explains the good accuracy
of these approximations using real data that are exhibited
in §4.3.

4.2. Mixed-Integer Programming Formulation

We begin this section with notation and then proceed to
a formulation of the elective admission mix and volume
optimization model. The cycle length we consider is days
11 0 0 0 17 to match a typical weekly schedule.

Sets
$ set of elective patient diagnosis types,
7 set of hospital wards.

Parameters
Bu ward u capacity in terms of beds,
� limit on the blocking probability for arriving

patients,
�u percent of total cancelations that are attributed to

ward u,
�̂u limit on the average number of off-ward patients

allowed for ward u,
pk1u
s 4d5 probability that an elective patient of type k admit-

ted on day s is in ward u, d days after admission,
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p̂u
z1d probability there are z emergency patients in

ward u on day d from the PATTERN PALM model,
p̃z1d probability there are z emergency patients in the

hospital on day d from the PATTERN PALM
model,

�k1d current elective admission volume of type k
patients on day d,

�̂k1d maximum number of elective admissions of type k
allowed on day d,

R reward vector where Rk is the reward for admitting
patient of type k.

Decision variables
äk1d number of type k ∈$ patients scheduled on day d,
�1
z1d indicator of whether z emergency patients in the hos-

pital on day d would exceed capacity,
�2
z1d indicator of whether z emergency patients in the hos-

pital on day d would exceed capacity minus one,
�̂u
z1d number of ward u off-ward patients on day d if there

are z emergency patients in ward u.
It is important to note here that the probabilities pk1u

s 4d5,
p̂u
z1d, and p̃z1d are all calculated offline per the analysis in

§§3.3 and 3.4 and then become data inputs to the two mixed-
integer programs that follow.

4.2.1. Maximum Elective Admissions Formulation.
First we present a formulation that maximizes the weighted
throughput of elective admissions subject to constraints on
bed blockage; 1 denotes a column vector of all ones and
M is a large number. For the sake of generality we include
the “reward” row vector, R, providing a relative value of
admitting a patient of type k. Our validation sets R to be a
row of all 1’s (every patient type has the same value) and
then manipulates the constraints if management’s goal is to
increase the volume of one particular service:

max
ä1�1 �̂

R ·ä ·1 (22)

s.t. M�1
z1d1

¾z−∑
u∈7

(
Bu−

7∑
d2=1

∑
k∈$

äk1d2

·
�∑
n=0

pk1u
d2−7n4d1 −d2 +7n5

)

d1 =11000171 z=11210001 (23)

M�2
z1d1

¾z−∑
u∈7

(
Bu−

7∑
d2=1

∑
k∈$

äk1d2

·
�∑
n=0

pk1u
d2−7n4d1 −d2 +7n5

)
+1

d1 =11000171 z=11210001 (24)
�∑
z=0

p̃z1d

(
�1
z1d−�2

z1d

)
¶�

(
1−

�∑
z=0

p̃z1d�
1
z1d

)

d=11000171 (25)

�i
z+11d¾�i

z1d i=1121 d=11000171 z=11210001 (26)

�̂u
z1d1

¾z+
7∑

d2=1

∑
k∈$

äk1d2
·

�∑
n=0

pk1u
d2−7n4d1 −d2 +7n5

−Bu−�u

7∑
d=1

�∑
l=0

p̃l1d

l∑
z=0

�1
z1d

∀u∈71 d1 =11000171 z=11210001 (27)
�∑
z=0

p̂u
z1d�̂

u
z1d¶ �̂u ∀u∈71 d=11000171 (28)

�̂u
z+11d¾ �̂u

z1d d=11000171 z=11210001 (29)

7∑
d=1

äk1d¾
7∑

d=1

�k1d ∀k∈$1 (30)

äk1d¶ �̂k1d ∀k∈$1 d=11000171 (31)

äk1d1�̂
u
z1d ∈�+1�1

z1d1�
2
z1d ∈80119

∀k∈$1 u∈71 z∈�1 d=1121000170 (32)

The objective function, Equation (22), maximizes the
weighted throughput of elective patients. Constraints 23–25
calculate the reduced capacity Erlang approximation
described in §4.1 by setting indicator decision variables:
�1
z1d = 18z emergency patients exceeds hospital capacity on

day d9 in Equation (23) and �2
z1d in Equation (24), which is

the same except that capacity is reduced by 1. Thus

�∑
z=0

p̃z1d�
1
z1d =�4Emerg Load ¾ Capacity5 and

�∑
z=0

p̃z1d�
2
z1d =�4Emerg Load ¾ Capacity − 150

That means that the LHS of Equation (25) is precisely
�(Emerg Load = Capacity). The RHS is therefore �(Emerg
Load ¶ Capacity), completing the Erlang loss B formula
described in §4.1. Note that

7∑
d2=1

∑
k∈$

äk1d2
·

�∑
n=0

pk1u
d2−7n4d1 −d2 + 7n5

is �d11 u
4ä5 from the analysis of the CALM model in

§3.4.2 (Theorem 4) and p̃n1d is the Poisson probabilities
from Theorem 2 of §3.3. Constraints 27–28 mathemat-
ically capture the expected off-ward census approxima-
tion detailed in §4.1. In constraint 27, note that the term
�u

∑7
d=1

∑�
l=0 p̃l1 d

∑l
z=0 �

1
z1d is subtracted from �d11 u

4ä5,
which accounts for the fact that, if patients are blocked from
the hospital, they will not contribute to ward demand and
off-ward census. The parameter �u refers to the historical
trend and/or hospital protocols for what types of patients get
canceled when a cancelation decision must be made. Note
that, although we use infinite sums to represent expectations
and blocking probabilities, truncating these to finite sums is
necessary. One approach is to truncate based on the product
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of the overage and the Poisson probabilities (which decay
quickly two standard deviations above the mean) to limit
the expected overage error. The same truncation scheme is
used for both the z index (Equations (23), (24), (27)) and
the n index (Equations (23)–(29)) since the two are linked
through the � and �̂ helper variables.

Constraints 26 and 29 are cuts that were added to the
model to increase solution speed by greatly reducing the
number of combinations that must be considered by branch
and bound. The meaning of Equation (26) (Equation (29))
is straightforward: if an n patient emergency load exceeds
capacity (exceeds capacity by a certain amount) then an
n+ 1 patient emergency load will also exceed capacity
(exceed by at least as much). Without this constraint, a
model with three wards and three patient types failed to
solve in under 24 hours, whereas solving in under 30 sec-
onds with the constraint.

The final two constraints, Equations (30) and (31), repre-
sent the reality that the model should not change the elective
admission schedule in ways incommensurate with historical
hospital practice. Specifically Equation (30) ensures that,
under the improved plan, no service’s planned volume is
reduced from their historical levels (a feature easily con-
trolled if a specialty OR service needs to target a different
load). Equation (31) allows the model to enforce capacity
constraints beyond hospital beds. For example, limiting the
amount of operating room time, or enforcing the typical
practice to admit few or no elective patients on the week-
ends (e.g., äk1Sunday ¶ 0 ∀k).

4.2.2. Minimum Blockages Formulation. Another
useful formulation is to keep the weekly volume of elective
admissions fixed and attempt to minimize the number of
blockages. This model reshuffles the mix of elective admis-
sions across the days of the week to eliminate unnecessary
blockages caused by an unstable, unbalanced schedule. The
main difference in this formulation is that the objective func-
tion becomes the expected number of blockages:

min
ä1�1 �̂

7∑
d=1

�∑
l=0

p̃l1d

l∑
z=0

�1
z1d0 (33)

We no longer need the blocking constraints defined by
Equations (23), (25), and (26) would only apply to �1

z1d,
since �2

z1d is no longer needed as a decision variable.
Another possible objective that our framework is capable

of capturing is minimizing the day-to-day variability of bed

Table 5. Simulation output vs. stochastic model output for characteristic hospital measures.

Sunday Monday Tuesday Wednesday Thursday Friday Saturday Total

Simple census 7100 8508 8508 8507 8500 8809 7409 N/A
Approximate census 7302 8701 8505 8601 8503 8804 7505 N/A
Different census (%) 301 106 −004 004 004 −006 008 N/A
Sim blockages 0000 0037 0038 0035 0027 0066 0000 2003
Approximate blockages 0000 0034 0028 0034 0027 0067 0000 109
Different blockages 000 0003 001 0001 000 0001 000 0013

Figure 7. Simulation output vs. stochastic model output
for characteristic hospital measures.

census. For example, it would be possible to minimize the
gap between the largest and smallest daily census within
the MIP.

4.3. Validating the Hospital Census
Optimization Model

As in §3.5, it is important to quantify the accuracy of the
hospital census and blockage approximations for the opti-
mal elective schedule. Because there is no historical record
of hospital census and blockages for the optimal schedule,
we compare the census approximation with a high-fidelity
simulation model that has already been validated against
historical hospital data (see Helm et al. 2011, 2010, 2009).

A year’s worth of historical data from a medium-sized,
nonteaching partner hospital was used to calibrate both the
optimization and simulation models for a core subset of
nine hospital wards (out of 22 total), including medicine,
surgical, and ICU/CCU wards. This reduced the amount of
data analysis and cleaning without degrading the value of
the study.

Figure 7 and Table 5 confirm that the stochastic cen-
sus model is a good approximation of actual census levels
and blockages. The small bias toward higher census levels
can be explained by the manner in which the simula-
tion treats cancelations and blockages. In the simulation,
the demand from cancelations and blockages is considered
lost (an approximation of reality), whereas the census
approximation models the overall demand for beds without
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loss. Although blockages are calculated, the blocked
patients are not removed from the demand calculations,
which yields the depression of census in the simulation ver-
sus the analytical model. The reality is likely somewhere in
between, as some demand is lost and some is rescheduled.
Regardless, the estimated values are very close; average
weekly blockages only differ by 0.13 patients in absolute
value and the census differs on average by only 1%. Because
the stochastic census model is an accurate approximation,
a detailed (and slow) simulation is no longer needed to
express the trade-offs between census and blockages to
design effective admission schedules.

4.4. Case Study, Proof of Concept, and Improving
Management Practice

To demonstrate the effectiveness and potential uses of our
approach to elective admissions scheduling, we validate
our method for the partner hospital of §4.3 by compar-
ing our optimized schedules with the current schedule for
overnight patients. In 2008, 14,827 patients stayed at least
one night, of which 7,016 were emergency patients and
the remaining 7,811 were scheduled patients. Patients trans-
ferred within the hospital 20,462 times for an average of 1.4
transfers per patient, which underscores the importance of
modeling ward network effects. The nine wards we model
comprise about 60% of the total patient volume with similar
characteristics to the total patient population.

One of our primary goals when developing our new
modeling methodology was to address patient blockage
(see §4.2.2), both elective cancelations and emergency
patient bed block, without reducing the number of patients
served. The wards modeled admitted 90 elective inpatients
per week on average. The minimum blockage formulation
of §4.2.2 was employed, constraining the weekly elective
volume to equal 90 and also constraining the volumes on
each admitting service to match the current level so that
the mix remains constant. The optimization generated an
optimal schedule matching these criteria, which we then
simulated (for completeness) to compare with the current
schedule. The result was a 32% reduction in average can-
celations per week, shown as the data point at the end of

Figure 8. (Color online) Controlling census and occupancy variability in hospitals and obtaining trade-off insights with
our methodology.

(a) Occupancy results with current and optimized schedules
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(b) Pareto curve insight into blockage vs. throughput

the down arrow in Figure 8(b). This reduction results from
reducing the midweek occupancy and smoothing the cen-
sus as seen in Figure 8(a), which compares the original and
optimal census curves.

Some hospitals with growth potential will want to
increase the volume of patients served while maintaining
the same level of access. To achieve this, the maximum
admissions formulation of §4.2.1 is employed, constrain-
ing the blockages to be less than or equal to the current
(3.29 per week) and maximizing the number of admissions.
This included Constraint 30 to ensure that each service is
given at least as many elective admissions as in the current
schedule. The data point at the end of the right arrow in Fig-
ure 8(b) shows an additional 310 elective admissions per
year (six per week) with slightly better access (3.27 block-
ages per week).

Remark 4. Because of Little’s Law (WIP = Throughput ∗
Cycle Time) and Constraint (30) that maintains (or in-
creases) the historical average number of patients scheduled
per unit time, the average delay to obtain an admission for
scheduled patients will not increase.

Improving Management Practice. These prescriptive
models are useful in exploring the boundaries of hospital
efficiency, but hospitals may prefer a balance between vol-
ume and blockage, which our method can also provide. The
Pareto curve in Figure 8(b) presents the trade-off between
elective admission volume and blockages. Notice that the
current schedule is above the Pareto curve so it can be
improved by increasing admissions, decreasing blockages,
or both.

To generate the Pareto curve, we use the extreme points
as boundaries and employ the minimum blockage formu-
lation by iterating the weekly number of elective admis-
sions between 90 and 96 and determining the schedule with
the fewest blockages at each admission level. The com-
putational speed with which the analytical model gener-
ates this curve represents an advance in decision support
that enables hospital administrators to understand the key
trade-offs involved in scheduling their admissions and gives
them the freedom to choose their desired operating point.
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Our optimization models were able to generate the operat-
ing curve automatically in a matter of minutes, with each
point taking about 30 seconds.

The key implication is a capability (which we believe is
both highly important and not currently possible) to make
strategic admission policies at the hospital level regarding
the trade-off between throughput and access. This trade-off
is the key to cost, quality, and access, and the Pareto curve
provides hospital managers the ability to make informed
decisions that affect this trade-off.

Implementing the Strategic Admission Plan. As men-
tioned in §3.1, the output of the optimization is a set of deci-
sion rules that guide the maximum number of admissions of
each type of patient that can be admitted on a given day of
the admission cycle. To avoid being too restrictive (and risk
increased barriers to acceptance) an implementation should
allow the admissions personnel to fill the slots with what-
ever patients they would like to schedule as long as they
do not exceed the admission numbers by patient type. Just
as with most other appointment systems, when all the slots
fill up on a given day the patient must be scheduled for a
different day with slots available.

It is also important to note that our model can go far
beyond what has been presented in the case study. For
example, the model can be used to design unique sched-
ules for each season—many hospitals have a low season
and a high season in terms of patient demand—by solv-
ing one optimization for each season modeled. Another way
to incorporate projected changes in demand (e.g., hiring
more surgeons) is to extend the cycle length (which can be
adjusted to any desired cycle length). Demand forecasts for
emergency patients can also be incorporated by modifying
the arrival rates over an admission cycle that matches the
demand forecast horizon.

5. Conclusions and Future Work
We have developed new models for a longstanding prob-
lem in hospital operations. This methodology can efficiently
generate optimal schedules to meet high-level hospital cri-
teria while modeling the entire hospital as a coordinated
system. The results have significant potential to inform hos-
pital decision makers as to how to use admission scheduling
as a tool to create a healthcare delivery system that is less
costly while providing better access, quality, and service to
patients.

Rather than mandating specific implementations of elec-
tive procedure scheduling, our approach provides decision
support on case mix and volume by patient type by day
of week, mitigating barriers to adoption. Additionally, the
discipline and predictability obtained by embracing this
system of smoothed census will streamline hospital proce-
dures, stabilize the operating environment for hospital per-
sonnel, more efficiently utilize fixed hospital resources, and
yield significant cost savings. For example, census vari-
ability reduction enables, among other things, cost savings
in nurse staffing while better facilitating proper nurse to
patient ratios.

The HASC problem has been approached in many ways;
however, previous approaches have not been able to gen-
erate optimal schedules for the entire hospital, including
ward network effects. The simulation approaches capture
the critical general network effects, but they lack a clear
schedule optimization method. The scheduling optimization
models, on the other hand, have not included the general
network effects, such as ward transfers and off-ward cen-
sus, that are critical to accurately modeling the true census
load on hospital wards. Our modeling approach has bridged
this gap by accurately capturing the census and blockage
dynamics analytically, eliminating the need for simulation
and enabling the use of MIP methods. To do so we formu-
lated a PATTERN PALM “arrival-location-model” to show
that the emergency demand for beds by ward can be charac-
terized as independent Poisson random variables. Secondly,
we extended the PALM approach to a new d-CALM for
elective admissions and analyzed its properties.

Through the validation process of the hospital census
model in §3.5 and the analysis of optimization results, we
have generated a number of managerial insights in addition
to the methodological contributions. The results of our anal-
ysis and case study show that (1) smooth census levels do
in fact improve blocking and throughput performance, and
(2) elective admission scheduling can be used to smooth
census while constraining the amount of planned off-ward
placement across the network of hospital resources. Thus,
from a managerial perspective, the goal should be to design
admission plans that drive toward smooth census levels even
in the absence of an optimization model. Further, our val-
idation indicated that a cyclo-stationary (weekly) model
with a deterministic elective admissions schedule can be a
fairly accurate model of actual hospital flows even when
tightly controlled elective admissions processes are not in
place. Although hospital blocking and off-ward placement
are complicating realities that contaminate historical data,
we showed that one can often use a system of linear equa-
tions to parameterize a corrected flow model from historical
data. Our results provide strong evidence that model-based
analysis using historical data can predict and smooth census
by day of week (or cycles of arbitrary lengths).

Methodologically, the novel analytical models developed
are much more tractable and powerful than prior mod-
els, allowing the generation of trade-off curves for hospi-
tal blocking versus throughput. This curve represents an
effective decision-making tool for hospital administrators,
because it enables flexibility and choice rather than a fixed
solution. This approach is likely to increase acceptance
by administrators, enabling them to make important deci-
sions based on deeper managerial insights and quantita-
tive analysis.

Supplemental Material

Supplemental material to this paper is available at http://dx.doi
.org/10.1287/opre.2014.1317.
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